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Background
XGC and Magnetic Confinement Fusion

I Approach to fusion energy in which a hot (100 million +
degree) fuel, in form of plasma, is confined by strong
magnetic fields

I Tokamak uses twisted magnetic fields wrapped around
toroidal surfaces

I XGC is a comprehensive gyrokinetic particle-in-cell
code for simulating fusion relevant plamsas confined in
toroidal magnetic fields
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Background
Electromagnetic Gyrokinetics

I MHD/fluid type electromagnetic modes are important in magnetically confined
fusion devices (e.g. edge localized modes, sawtooth oscillations, Alfvén
eigenmodes, etc.)

I Important effects may be missing from fluid models (e.g. trapped particle effects,
wave-particle interactions, finite Larmor radius effects, etc. )

I Characteristic frequencies of modes of interest are smaller than the gyrofrequency
→ gyrokinetic ions, drift kinetic electrons

I There are known numerical difficulties, however, associated with electromagnetic
gyrokinetic PIC (cancellation problem for p‖, inductive component of electric field
for v‖)

I A fully implicit PIC method can mitigate these issues, however, we need an
efficient way to invert the resulting system of nonlinear equations at each time
step to make this practical.
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Gyrokinetics
Particle Motion in a Magnetic Field

Particle Position

Parameters of Gyromotion

Gyrofrequency: Ωα = qα|B|/mα,

Gyroradius (Larmor): ρα = v⊥/Ωα

I Gyration perpendicular to B

I Streaming parallel to B

I Well defined “Guiding Center"

X = x− b̂× v

Ωα

Gyrokinetics (GK):

I Possible to reduce dynamics

I Treat gyrating particles as
drifting charged rings
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Electromagnetic Gyrokinetics
Governing Equations

I Guiding center phase space distribution function for species s = i, e

fs(X, µ, v‖, t) : R5 × R→ R+

I Normalized with number of guiding centers for species s:∫ ∞
−∞

∫ ∞
0

∫
R3

fs(X, µ, v‖)d
3XBdµdv‖ = Ngc

s

I GK Vlasov Equation:
∂fs
∂t

+ Ẋ · ∂fs
∂X

+ v̇‖
∂fs
∂v‖

= 0

I Drift Motions:

Ẋ =
1

D

[
v‖

(
b̂0 + δb̂

)
+

ms

qsB0
v2
‖∇× b̂0 −

ms

qsB0
b̂0 ×

(
qs
ms
〈E〉 − µ∇B0

)]
v̇‖ =

qs
msD

[(
b̂0 + δb̂

)
+

ms

qsB0
v‖∇× b̂0

]
·
(
〈E〉 − ms

qs
µ∇B0

)
D = 1 +

ms

qsB0
v‖b0 · ∇ × b0
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Electromagnetic Gyrokinetics
Governing Equations

Perturbed Fields:

E = −∇φ−
∂A‖

∂t
b̂0

δB = ∇×
(
A‖b̂0

)
Potential Equations:

−
en0mi

qiB2
0

∇2
⊥φ = qin̄i − ene

−
1

µ0
∇2
⊥A‖ = j‖i + j‖e

Velocity Moments:

n̄i(x) =

∫ ∞
−∞

∫ ∞
0

〈
fi(X, v‖, µ)δ(X− x + ρi)

〉
Bdµdv‖

ne(x) =

∫ ∞
−∞

∫ ∞
0

〈
fe(X, v‖, µ)δ(X− x)

〉
Bdµdv‖

j‖s(x) = qs

∫ ∞
−∞

∫ ∞
0

v‖
〈
fs(X, v‖, µ)δ(X− x)

〉
Bdµdv‖

Gyrokinetic Vlasov:
∂fs

∂t
+ Ẋ ·

∂fs

∂X
+ v̇‖

∂fs

∂v‖
= 0
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Particle-in-Cell Method
Elements of PIC

I Computational particles: Xp, v‖p, µp for p = 1, 2, ..., NP

I Computational mesh: xj , j = 1, 2, ..., NM

I Fields and moments defined on mesh: (ns, j‖s)j and (E, δB)j

I Shape function S(x) communicates between mesh and particle
quantities:

X j-1 X j X j+1
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Particle-in-Cell Method
Computational Cycle

I Typically system is explicitly advanced in time:

Update Fields

Interpolate
Fields → Particles

Push Particles

Deposit
Particles → Moments

(E, δB)j

〈E〉p, δBp

(ns, j‖s)j

Xp, v‖p, µp

I A fully implicit scheme advances particles and fields simultaneously each time
step. (G. Chen, L. Chacón, D. Barnes, J. Comput. Phys., 2011)

I Requires solution of system of nonlinear equations at each time step.

I Made possible due to a low-dimensional residual formulation (Particles are
coupled only through field quantities!)
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Implicit Particle-in-Cell
Discrete Model

I Implicitly discretized fields:

En+1/2 = −1

2

(
∇φn+1 +∇φn

)
− 2

∆t

(
A
n+1/2

‖ −An‖
)
b̂0

δBn+1/2 = ∇×
(
A
n+1/2

‖ b̂0

)
.

I Potential equations:

L1φ
n+1 = qin̄

n+1
i − enn+1

e , L1 ≡ −
en0mi

qiB2
0

∇2
⊥

L2A
n+1/2

‖ = j
n+1/2

‖i + j
n+1/2

‖e , L2 ≡ −
1

µ0
∇2
⊥

I Nonlinear dependence on φn+1 and An+1/2

‖ through particle system:

nn+1
s = ns(φ

n+1, A
n+1/2

‖ )

j
n+1/2

‖s = j‖s(φ
n+1, A

n+1/2

‖ ).
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Implicit Particle-in-Cell
Iteration Scheme

I Iteration Scheme: (
φ
A‖

)k+1

=

(
φ
A‖

)k
− P−1

(
Rφ
RA

)k

Update Potentials:(
φ

A‖

)k+1

=

(
φ

A‖

)k
+

(
δφ

δA‖

)

XGC

Push and Deposit Particles:

ns(φ
k, Ak

‖), j‖s(φ
k, Ak

‖)

s = i, e

Construct Residuals:(
Rφ

RA

)k
=

(
L1φ

k −
∑

s qsns(φ
k, Ak

‖)

L2A
k
‖ −

∑
s j‖s(φ

k, Ak
‖)

)

Fluid Preconditioner

Solve Linear System :

P
(

δφ
δA‖

)
= −

(
Rφ

RA

)k
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Fluid Preconditioner Model
Basic Model

I If P = J , Newton’s method, however, constructing J is infeasible.

I Use physics knowledge to postulate a model that captures the linear response of
fastest timescales (physics-based preconditioning)

Note:
Approximations made in the preconditioner do NOT affect the converged solution

I Fastest timescales come from electron motions parallel to the background
magnetic field:

∂fe
∂t

+ Ẋ · ∂fe
∂X

+ v̇‖
∂fe
∂v‖

= 0

Ẋ ≈ v‖b0, v̇‖ ≈ −
e

me
E‖

I Captures shear Alfvén and ΩH modes
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Fluid Preconditioner Model
Basic Model

I Taking velocity moments of GK Vlasov and discretizing in time:

nn+1
e −∆t∇‖j‖e = RHSn

me

e2n0
j
n+1/2

‖e +
∆t

4
∇‖φn+1 +A

n+1/2

‖ − ∆t

4

Te
en0
∇‖nn+1

e = RHSn

I Preconditioner matrix equation:
L1 0 M 0
0 L2/e 0 −M
0 0 I −∆tB∇‖B−1

∆t
4
∇‖ I − ∆t

4n0

(
E‖ + Te

e
∇‖
)

me
en0




δφ
δA‖
δn
δj‖/e

 = −


Rφ
RA
0
0

 .
I Rφ, RA come from particle system

I δφ, δA‖ used to correct φk, Ak‖ .
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Fluid Preconditioner Model
Anderson Acceleration

I Suppose we wish to solve f(x) = 0, and we have a set of m iterates:
xl, l = 1, 2, ...,m.

I Select a linear combination in a way to reduce the residual as much as possible (if
f = Ax− b ).

min
α∈Rm

∥∥∥∥∥
m−1∑
j=0

αj+1f
k−j

∥∥∥∥∥
2

, where
m∑
j=1

αj = 1, f l ≡ f(xl)

I The the new iterate is:

xk+1 =

m−1∑
j=0

αj+1x
k−j

I Related to GMRES

I D. G. Anderson, J. Assoc. Comput. Mach., 12 (1965), pp. 547-560
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Fluid Preconditioner Model
Particle-Mesh Interactions

I Fluid preconditioner converges too slowly to be practical. We need to understand
what missing effects could influence fast timescale behaviors.

I Field data is interpolated to particles and particle data is deposited to mesh→
fields are effectively smoothed in moment responses.

I In XGC, interpolation and deposition are done in field-line-following coordinates. A
directional smoothing operator S to mimic this effect can be derived from PIC
equations.


L1 0 M 0
0 L2/e 0 −M
0 0 I −∆tB∇‖B−1

∆t
4
S∇‖ S −∆t

4
Te
en0
∇‖ me

en0




δφ
δA‖
δn
δj‖/e

 = −


Rφ
RA
0
0

 .
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Fluid Preconditioner Model
Particle-Mesh Interactions

∆t 4.36× 10−8 s

n0 1.0× 1019 m−3

Te 2.0 keV

me 9.11× 10−30 kg

mi 1.67× 10−27 kg

vA∆t
∆s

1.7
vth∆t

∆s
0.8
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Fluid Preconditioner Model
Three Field Model

I We are motivated to examine the term involving Te:
L1 0 M 0
0 L2/e 0 −M
0 0 I −∆tB∇‖B−1

∆t
4
S∇‖ S −∆t

4
Te
en0
∇‖ me

en0




δφ
δA‖
δn
δj‖/e

 = −


Rφ
RA
0
0

 .
I The “red-black" mode is in the null space of a central differenced ∇‖ operator.

I Reformulate by eliminating third equation:

 L1 0 ∆tMB∇‖B−1

0 L2/e −M
∆t
4
S∇‖ S me

en0
− ∆t2Te

4en0
B∇2

‖B
−1

 δφ
δA‖
δj‖/e

 = −

 Rφ
RA
0

 ,
I Standard three-point stencil for second order operator sees the “red-black" mode.
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Fluid Preconditioner Model
Three Field Model

∆t 4.36× 10−8 s

n0 1.0× 1019 m−3

Te 2.0 keV

me 9.11× 10−31 kg

mi 1.67× 10−27 kg

vA∆t
∆s

1.7
vth∆t

∆s
2.5
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Fluid Preconditioner Model
Back to the Particle-in-cell model

I Convergence is still limited by “red-black" mode, but improves at lower
temperatures.

I Spatial discretizations in the fluid equations have their origin in particle motions

I We are operating in a regime where electrons can cross a few poloidal planes
over a time step (Moderate to large vth∆t/∆s).
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Fluid Preconditioner Model
Back to the Particle-in-cell model

I Sub-cycled electrons interpolate field data as they travel during a
time step, carrying this information long distances

I It’s possible to analyze these effects by returning to the PIC
equations (Work in progress)

I We want to use this analysis to guide the choice of parallel gradient
discretizations in the fluid model to include some nonlocality.
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Summary and Future Work
-

I Working to develop electromagnetic capability in XGC

I A fully implicit PIC method can overcome numerical difficulties
associated with electromagnetic gyrokinetics (cancellation problem,
inductive field component)

I Requires solution of nonlinear system of equations at each
timestep→ an effective precondition is essential!

I Several improvements have been made to reduce number of
iterations needed for convergence

I Developing an understanding of the subtleties of our system and
using this understanding to guide further improvements
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Questions?
-

Please Ask!
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